Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation.
نویسندگان
چکیده
Titin, a 1-microm-long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties in its I-band region, which is largely composed of a PEVK region (70% proline, glutamic acid, valine, and lysine residue) and seven-strand beta-sandwich immunoglobulin-like (Ig) domains. The behavior of titin as a multistage entropic spring has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfolding of individual Ig domains. We performed steered molecular dynamics simulations to stretch single titin Ig domains in solution with pulling speeds of 0.5 and 1.0 A/ps. Resulting force-extension profiles exhibit a single dominant peak for each Ig domain unfolding, consistent with the experimentally observed sequential, as opposed to concerted, unfolding of Ig domains under external stretching forces. This force peak can be attributed to an initial burst of backbone hydrogen bonds, which takes place between antiparallel beta-strands A and B and between parallel beta-strands A' and G. Additional features of the simulations, including the position of the force peak and relative unfolding resistance of different Ig domains, can be related to experimental observations.
منابع مشابه
Steered molecular dynamics simulation of conformational changes of immunoglobulin domain I27 interprete atomic force microscopy observations
Atomic force microscopy and steered molecular dynamics investigations of the response of so-called mechanical proteins like titin, tenascin or their individual immunoglobulin and fibronectin type III domains have lead to qualitative insights about the relationship between the b sandwich domain architecture and the function of this class of proteins. The proteins, linear segments of up to hundre...
متن کاملSteered molecular dynamics studies of titin I1 domain unfolding.
The cardiac muscle protein titin, responsible for developing passive elasticity and extensibility of muscle, possesses about 40 immunoglobulin-like (Ig) domains in its I-band region. Atomic force microscopy (AFM) and steered molecular dynamics (SMD) have been successfully combined to investigate the reversible unfolding of individual Ig domains. However, previous SMD studies of titin I-band mod...
متن کاملThe key event in force-induced unfolding of Titin's immunoglobulin domains.
Steered molecular dynamics simulation of force-induced titin immunoglobulin domain I27 unfolding led to the discovery of a significant potential energy barrier at an extension of approximately 14 A on the unfolding pathway that protects the domain against stretching. Previous simulations showed that this barrier is due to the concurrent breaking of six interstrand hydrogen bonds (H-bonds) betwe...
متن کاملSimulated refolding of stretched titin immunoglobulin domains.
Steered molecular dynamics (SMD) is used to investigate forced unfolding and spontaneous refolding of immunoglobulin I27, a domain of the muscle protein titin. Previous SMD simulations revealed the events leading to stretch-induced unfolding of I27, the rupture of hydrogen bonds bridging beta-strands A and B, and those bridging beta-strands A' and G, the latter rupture occurring at an extension...
متن کاملComputer modeling of force-induced titin domain unfolding.
Titin, a 1 micron long protein found in striated muscle myofibrils, possesses unique elastic and extensibility properties, and is largely composed of a PEVK region and beta-sandwich immunoglobulin (Ig) and fibronectin type III (FnIII) domains. The extensibility behavior of titin has been shown in atomic force microscope and optical tweezer experiments to partially depend on the reversible unfol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 75 2 شماره
صفحات -
تاریخ انتشار 1998